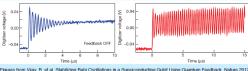
Investigation of a USRP FPGA Platform for Quantum Sensing and Control

Aaron Wubshet

	Background
<u></u>	Algorithm development
	Hardware Realization
*	Conclusion
! !	Next Steps
?	Questions

Logistics & Scope

FEASIBILITY STUDY FOLLOW UP TO LDRD POSTER SESSION, SEMINAR, AND MASTER'S THESIS



USRP PLATFORM FOR SUPERCONDUCTING QUANTUM SENSING Lawrence Livermore Aboratory Directed Aaron Wubshet, John Breneman, Lisa Poyneer

National Laboratory

BACKGROUND & APPLICATIONS

- DOE National Strategic Computing Initiative and LLNL's HPC, Simulation, and Data Science core competency
- We want to rapidly control a superconducting qubit
 - Desirable output

- Axion detection research
- Quantum information processing

MATLAB

Leverage and adapt

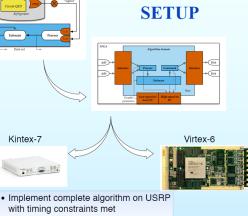
Simulate and validate

functional behavior via

existing IP

testbench

• Design:


June • Migrate "process" onto USRP Begin investigating universal portability of HDL generated **Progress** • Synthesis: Resource utilization determined Netlist generated

Place & Route:

generated

Timing constraints

Programming file

EXPERIMENTAL

Dec.

- with timing constraints met Finalize thesis project experiment
- Sept. Gather materials & relevant
 - Combining multiple toolchains into cohesive workflow
 - portability of HDL being generated

toolchains required

analysis, & thesis

Complete data collection,

• Validation of USRP implementation

under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under ContractDE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No.17-ERD-006. IM RELEASE NUMBER: LLNL-POST-78228

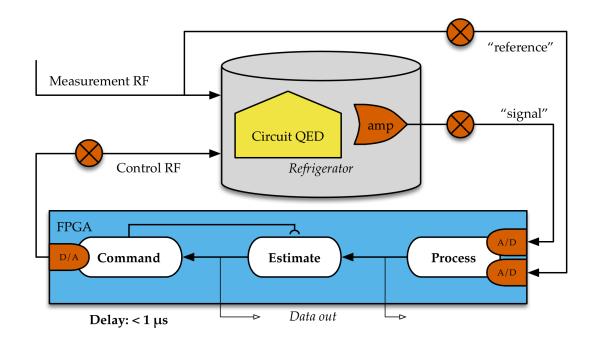
- Unique testbench for USRP platform
- Additional handshaking required

NEXT STEPS

MIT 6-A M.Eng

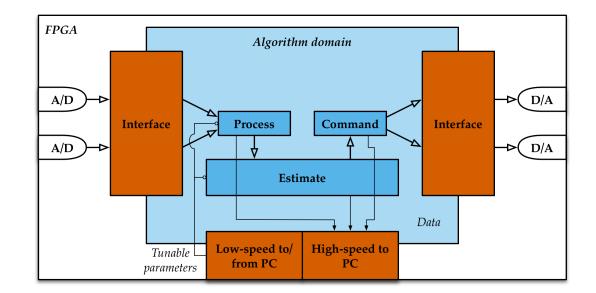
CURRENT PROJECT

- The goal is to develop and experimentally validate algorithmic, FPGA-based control of a transmon
- Current progress is concentrated on II FPGA, but migration to USRP (and other platforms) is underway
- Modify implementation in order to meet timing requirements

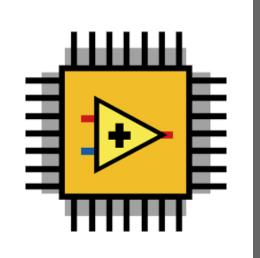

POSSTBLE THESTS EXPERIMENTS

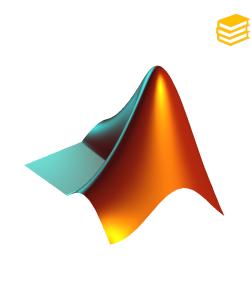
- Implement less computationally intensive control scheme on FPGA (PID, state space, etc)
- Implement processing, control, and estimation in native VHDL to ensure portability
- Created VHDL "wrapper" to enable Validate and characterize SDR capabilities relative to existing testing RF equipment

Acknowledgements & References


Experimental Apparatus

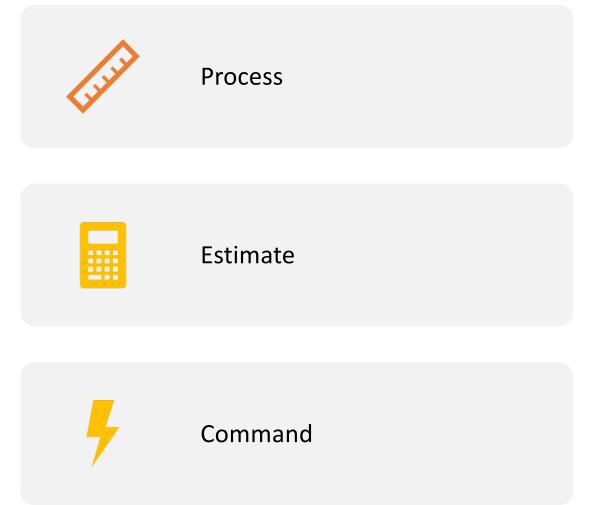
- ➤ 4mK refrigerator
- Circuit QED = superconducting charge qubits as transmons
- External heterodyne


FPGA Interface

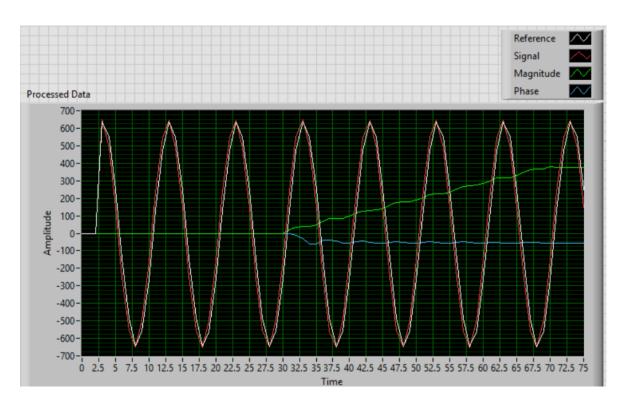

- Defining interface for USRP
- Interacting with LabVIEW host
- Configuring RF peripherals

Development Workflow

Simulation Benchtop Testing Laboratory Testing Data Analysis

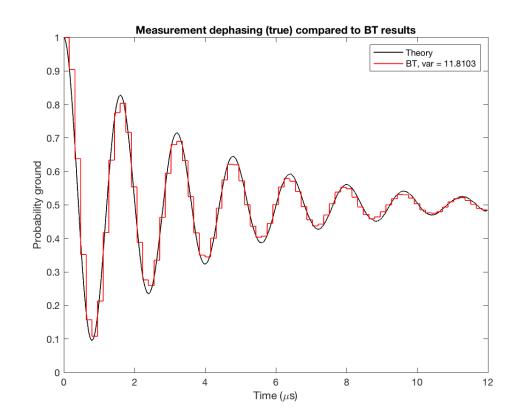


XILINX_®

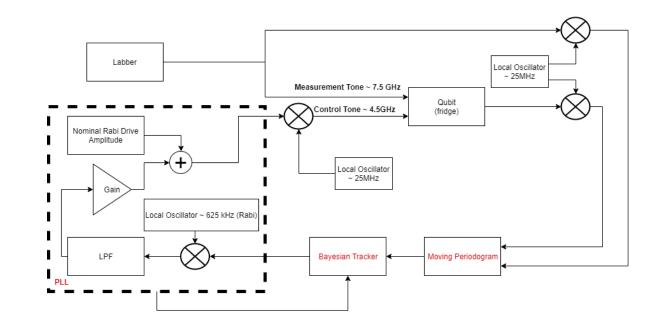

Quantum Sensing and Control Algorithm (QSCA)

Process

....


- Moving periodogram algorithm
- CORDIC block to provide phase and magnitude
- Phase difference detection

e


Estimate

- State space model based approach
- Statistical Bayesian update
- Minimum update time 160ns

Command

- Lock onto Bayesian Tracker estimate trajectory via mixing phase compensated local oscillator
- Low pass filter to extract signal proportional to phase difference
- Apply gain

ô

HDL Coder

Critical Path Report for hdl_all/QC_HDL

Summary Section

Critical Path Delay : 8.902 ns Critical Path Begin : *HDL_BT_RM.* Critical Path for *i : Unit Delays.* Highlight Critical Path: C:\Users\wubshet1\Documents\hdlcoder\92519_PRI\hdlsrc\hdl_all\riticalPathEstimated.m Highlight Uncharacterized blocks: C:\Users\wubshet1\Documents\hdlcoder\92519_PRI\hdlsrc\hdl_all\highlightCriticalPathEstimationOffen

Critical Path Details

Id	Propagation (ns)	Delay (ns)	Block Path
1	8.9020	8.9020	HDL_BT_RM
2	0.2980	-8.6040	Unit Delay1
3	8.8720	8.5740	1-D Lookup Table
4	8.9020	0.0300	Unit Delay5

- Generates customized VHDL to match Simulink functionality
- Pipelines to meet desired clock speed
- Modularizes VHDL libraries to mimic Simulink reference models
- Supports useful features in Simulink like data dictionaries
- Provides optimized blocks for certain operations

II vs USRP

≻250MHz

- Depreciated drivers
- ISE generated bit file
- Interact with LabVIEW host with external C++ Library
- Interface requires modifications in VHDL

≻200MHz

- Modern platform
- Vivado generated bit file
- Interact with LabVIEW host with purely native LabVIEW code
- Interface requires minimal VHDL modifications, mostly defined and configured in LabVIEW

Hello World

Moving Periodogram Testbench

Full QSCA Testing

Hello World

- Blinking LEDs
- Simple data processing and transfer
- Exploring how to interact with radio front end

NI LabVIEW for CompactRIO Developer's Guide

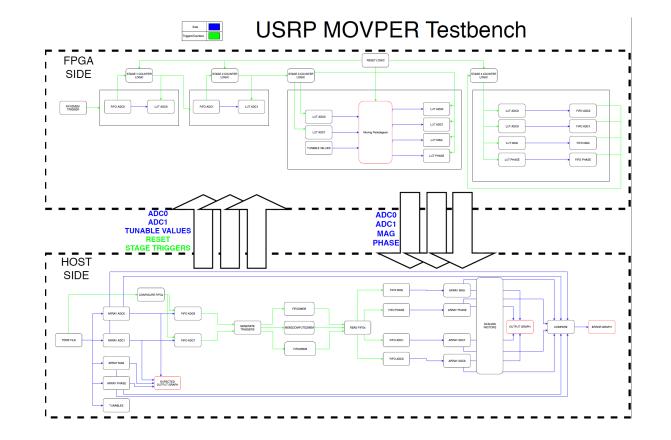
Recommended LabVIEW Architectures and Development Practices for Control and Monitoring Applications

> SOFTWARE DEFINED RADIO HANDS ON: FPGA PROTOTYPING WITH OVER-THE-AIR SIGNALS

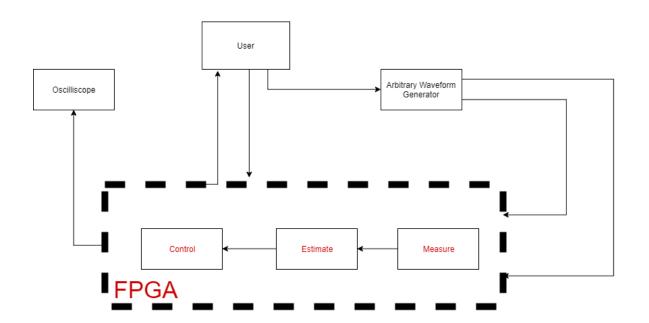
Version 4.0

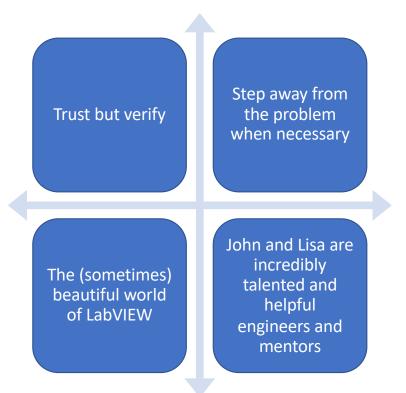
NI LabVIEW High-Performance FPGA Developer's Guide

Recommended Practices for Optimizing LabVIEW RIO Applications



Moving Periodogram Testbench


- Using data collected and validated on the II as input to validate
 - Moving periodogram
 - > Data transfer
- Using real AWG signals as stimulus


Full QSCA Testing

- Trigger source, AWG, scope, and USRP set up to mimic laboratory experimental apparatus
- Data processed and saved by updated LabVIEW host

Conclusion

The USRP *might* be a viable FPGA platform for quantum sensing and control and should be explored for quantum information research as well as axion detection research

Next Steps

!

COMPLETE DATA COLLECTION/ANALYSIS COMPLETE THESIS

CODE REVIEW/HANDOFF

- Closed loop control
- Full state feedback

